

The filter output: r(t) = s(t) + n(t)

 $n(t) = x(t)\cos(\omega_c t + \theta_c) - y(t)\sin(\omega_c t + \theta_c)$

When:

 $s_{1}(t) = A\cos(\omega_{c}t + \theta_{c}),$ $s_{2}(t) = 0,$ $r_{1}(t) = [A + x(t)]\cos(\omega_{c}t + \theta_{c}) - y(t)\sin(\omega_{c}t + \theta_{c})$ $r_{2}(t) = x(t)\cos(\omega_{c}t + \theta_{c}) - y(t)\sin(\omega_{c}t + \theta_{c})$ 2Your site here

The BER is:

OOK

$$P_{e} = P(error \mid s_{1} \; sent) P(s_{1} \; sent) + P(error \mid s_{2} \; sent) P(s_{2} \; sent)$$
$$= \frac{1}{2} \int_{-\infty}^{V_{T}} f(r_{0} \mid s_{1}) dr_{0} + \frac{1}{2} \int_{V_{T}}^{\infty} f(r_{0} \mid s_{2}) dr_{0}$$

The $r_2(t)$ envelope is a Rayleigh PDF:

$$f(r_0 \mid s_2) = \begin{cases} \frac{r_0}{\sigma^2} e^{-r_0^2 / 2\sigma^2}, & r_0 \ge 0\\ 0, & r_0 < 0 \end{cases}$$

The $r_1(t)$ envelope is a Rician PDF:

$$f(r_{0} | s_{1}) = \begin{cases} \frac{r_{0}}{\sigma^{2}} e^{-(r_{0}^{2} + A^{2})/2\sigma^{2}} I_{0} \left(\frac{r_{0}A}{\sigma^{2}}\right) & r_{0} \ge 0\\ 0 & r_{0} < 0 \end{cases}$$

3 Your site here

The BER for noncoherent detection of OOK is:

$$P_e = \frac{1}{2} e^{-\left[\left(\frac{1}{2TB_p}\right)\left(\frac{E_b}{N_0}\right)\right]}$$

The input consists of an FSK signal plus white Gaussian noise

$$r(t) = \begin{cases} s_1(t) = A\cos(\omega_1 t + \theta_1), & data = 1\\ s_2(t) = A\cos(\omega_2 t + \theta_2), & data = 0 \end{cases} + n(t)$$

5

金子科技大学
 かいたいたいのからのないためで、
 通信与信息工程学院

Assume:

FSK

- The bandpass filter bandwidth is *B_p*.
- The frequency shift $2 \Delta F = f_1 f_2$ is sufficiently large so that the spectra $s_1(t)$ and $s_2(t)$ have negligible overlap.

The BER:

$$P_{e} = P(error | s_{1} sent)P(s_{1} sent) + P(error | s_{2} sent)P(s_{2} sent)$$
$$= \frac{1}{2} \int_{-\infty}^{V_{T}} f(r_{0} | s_{1}) dr_{0} + \frac{1}{2} \int_{V_{T}}^{\infty} f(r_{0} | s_{2}) dr_{0}$$
$$= \int_{0}^{\infty} f(r_{0} | s_{2}) dr_{0}$$

When $s_2(t)$ sent

♦ upper : The output is only Gaussian noise → Rayleigh pdf

♦ lower : The output is sinusoid plus noise → Rician pdf

The BER of FSK for noncoherent detection:

$$P_{e} = \frac{1}{2} e^{-A^{2}/(4\sigma^{2})} \qquad \text{or} \qquad P_{e} = \frac{1}{2} e^{-\left[\left(\frac{1}{2TB_{p}}\right)\left(\frac{E_{b}}{N_{0}}\right)\right]}$$

For PSK signals, a partially coherent technique can be used.

DPSK

Assume:

PSK

- The additive input noise is white and Gaussian.
 The phase perturbation of the composite signal plus noise varies slowly so that the phase reference is essentially a constant.
- The transmitter carrier oscillator is sufficiently stable.

For typical value of B_T and E_b/N_0 in the range of $B_T=3/T$ and $E_b/N_0=10$, the BER can be approximated by:

$$P_e = Q\left(\sqrt{E_b / N_0}\right)$$

The performance of the suboptimum receiver is similar to that obtaned for OOK and FSK.

The BER for the optimum DPSK receiver of Fig. 7-12b is:

$$P_{e} = \frac{1}{2} e^{-(E_{b}/N_{0})}$$

Comparison of the error performance between **BPSK** and **DPSK** with optimum demodulation:

For the same p_e ($p_e=10^{-4}$ or less), DPSK signaling requires, at most, 1 dB more E_b/N_0 than BPSK.

7.5 Quadrature phase-shift keying and minimum-shift keying

QPSK signal:

$$s(t) = (\pm A)\cos(\omega_c t + \theta_c) - (\pm A)\sin(\omega_c t + \theta_c)$$

The input noise is:

OPSK

$$n(t) = x(t)\cos(\omega_c t + \theta_n) - y(t)\sin(\omega_c t + \theta_n)$$

Because both the upper and lower channels of the receiver are BPSK receiver, the BER for the QPSK is:

$$P_e = Q\left(\sqrt{2\left(\frac{E_b}{N_0}\right)}\right)$$

13

MSK is essentially equivalent to QPSK

Except

- The data on the x(t) and y(t) quadrature modulation components are offset.
- •MSK equivalent data pulse shape is a positive part of a cosine function instead of a rectangular pulse.

Because the MSK and QPSK signal representations and the optimum receiver structures are identical except for the pulse shape, the BER for MSK and QPSK is identical:

$$P_e = Q\left(\sqrt{2\left(\frac{E_b}{N_0}\right)}\right)$$

If the data are properly encoded, the data on an MSK signal can also be detected by using FM-type detectors.

For this suboptimum detection of MSK, the BER is given by the BER for FSK:

For coherent FM detection:

$$P_e = Q\left(\sqrt{\frac{E_b}{N_0}}\right)$$

For noncoherent FM detection:

$$P_e = \frac{1}{2} e^{-\left[\left(\frac{1}{2TB_p}\right)\left(\frac{E_b}{N_0}\right)\right]}$$

7.6 comparison of digital signaling systems

Your site here

16

Comparison

Bit-error rate and bandwidth

TABLE 7-1 COMPARISON OF DIGITAL SIGNALING METHODS

Type of Digital Signaling	Minimum Transmission Bandwidth Required ^a (Where R Is the Bit Rate)				Error Performance	
Baseband signaling		11.8				139
Unipolar	$\frac{1}{2}R$	(5-105)			$Q\left[\sqrt{\left(\frac{E_b}{N_0}\right)}\right]$	(7–24b)
Polar	$\frac{1}{2}R$	(5-105)			$Q\left[\sqrt{2\left(\frac{E_b}{N_0}\right)}\right]$	(7–26b)
Bipolar	$\frac{1}{2}R$	(5-105)			$\frac{3}{2}Q\left[\sqrt{\left(\frac{E_b}{N_0}\right)}\right]$	(7–28b)
Bandpass signaling		6 2.40	Coherent detecti	on	Noncoherent detection	1
OOK	R	(5-106)	$Q\left[\sqrt{\left(\frac{E_b}{N_0}\right)}\right]$	(7–33)	$\frac{1}{2} e^{-(1/2)(E_b/N_0)}, \left(\frac{E_b}{N_0}\right) > \frac{1}{4}$	(7–58)
BPSK	R	(5-106)	$Q\left[\sqrt{2\left(\frac{E_b}{N_0}\right)}\right]$	(7–38)	Requires coherent detection	
FSK	$2\Delta F + R$ where $2\Delta F = f_2 - f_1$ is the frequency shift	(5-89)	$Q\left[\sqrt{\left(\frac{E_b}{N_0}\right)}\right]$	(7-47)	$\frac{1}{2} e^{-(1/2)(E_b/N_0)}$	(7–65)
DPSK	R	(5-106)	Not used in practice		$\frac{1}{2} e^{-(E_b/N_0)}$	(7-67)
QPSK	$\frac{1}{2}R$	(5-106)	$Q\left[\sqrt{2\left(\frac{E_b}{N_0}\right)}\right]$	(7–69)	Requires coherent detection	
MSK	1.5R (null bandwidth)	(5-115)	$Q\left[\sqrt{2\left(\frac{E_b}{N_0}\right)}\right]$	(7–69)	$\frac{1}{2}e^{-(1/2)(E_0/N_0)}$	(7–65)

17

Your site here

通信与信息工程学员

Comparison

Bit-error rate and bandwidth

Your site here

通信与信息工程学校

19

Two main effects produce noise or distortion:

Quantizing noise that is caused by the M-step quantized at PCM transmitter

Bit errors in the recovered PCM signal . (channel noise, improper channel filtering, ISI etc.)

20

Question:

What is the peak signal power to average noise power ratio $(S/N)_{pk out}$ for the analog output?

..., 0001 0101, 1000 0101, ...

•Assume polar signaling is used and the PCM code words are related to the quantized values by

$$Q(x_k) = V \sum_{j=1}^n a_{kj} \left(\frac{1}{2}\right)^j$$

The analog sample output of PCM system for the k-th sampling time is

$$y_k = x_k + n_k$$

The output peak signal power to average noise power ratio is

$$\left(\frac{S}{N}\right)_{pk out} = \frac{\left[\left(x_k\right)_{\max}\right]^2}{\overline{n_k^2}} = \frac{V^2}{\overline{n_k^2}}$$

where
$$\overline{n_k^2} = \overline{e_q^2} + \overline{e_b^2}$$

Quantizing noise that is due to the quantizing error

$$e_q = Q(x_k) - x_k$$

•Noise due to bit errors that are caused by the channel noise:

$$e_b = y_k - Q(x_k)$$

The quantizing noise power

$$\overline{e_q^2} = \int_{-\infty}^{+\infty} e_q^2 f(e_q) de_q = \int_{-\delta/2}^{+\delta/2} e_q^2 \frac{1}{\delta} de_q = \frac{\delta^2}{12} = \frac{V^2}{3M^2}$$

The noise power due to bit error

$$\overline{e_b^2} = \frac{4}{3} V^2 P_e \frac{M^2 - 1}{M^2}$$

24

Conclusion:

•The out peak signal power to average noise power ratio is

$$\left(\frac{S}{N}\right)_{pk \ out} = \frac{3M^2}{1+4(M^2-1)P_e}$$

$$\left(\frac{S}{N}\right)_{out} = \frac{\overline{(x_k)^2}}{\overline{n_k^2}} = \frac{V^2}{3 \overline{n_k^2}} = \frac{1}{3} \left(\frac{S}{N}\right)_{pk out}$$

25

$$\left(\frac{S}{N}\right)_{out} = \frac{M^2}{1+4(M^2-1)P_e}$$

通信与信息工程学员